Target classification with low-resolution radar based on dispersion situations of eigenvalue spectra
نویسندگان
چکیده
منابع مشابه
Classification of polarimetric radar images based on SVM and BGSA
Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...
متن کاملGeneral Linear Chirplet Transform and Radar Target Classification
In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...
متن کاملAutomated classification of IUE low-dispersion spectra I. Normal Stars
Along the life of the IUE project, a large archive with spectral data has been generated, requiring automated classification methods to be analyzed in an objective form. Previous automated classification methods used with IUE spectra were based on multivariate statistics. In this paper, we compare two classification methods that can be directly applied to spectra in the archive: metric distance...
متن کاملRadar Target Recognition Based on Parameterized High Resolution Range Profiles
A new scheme of radar target recognition based on parameterized high resolution range profiles (PHRRP) is presented in this paper. A novel criterion called generalizedweighted-normalized correlation (GWNC) is proposed for measuring the similarity between PHRRP’s. By properly choosing the parameter of the mainlobe width in GWNC, aspect sensitivity of PHRRP’s can be reduced without sacrificing th...
متن کاملTarget Classification with Low-resolution Surveillance Radars Based on Multifractal Features
The multifractal characteristics of return signals from aircraft targets in conventional radars offer a fine description of dynamic characteristics which induce the targets’ echo structure; therefore they can provide a new way for aircraft target classification and recognition with low-resolution surveillance radars. On basis of introducing the mathematical model of return signals from aircraft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Information Sciences
سال: 2010
ISSN: 1674-733X,1869-1919
DOI: 10.1007/s11432-010-3099-5